首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11074篇
  免费   970篇
  国内免费   1617篇
测绘学   486篇
大气科学   480篇
地球物理   987篇
地质学   4108篇
海洋学   1070篇
天文学   5082篇
综合类   427篇
自然地理   1021篇
  2024年   24篇
  2023年   85篇
  2022年   287篇
  2021年   273篇
  2020年   339篇
  2019年   358篇
  2018年   283篇
  2017年   269篇
  2016年   298篇
  2015年   310篇
  2014年   558篇
  2013年   620篇
  2012年   611篇
  2011年   750篇
  2010年   789篇
  2009年   1047篇
  2008年   975篇
  2007年   866篇
  2006年   807篇
  2005年   706篇
  2004年   598篇
  2003年   518篇
  2002年   411篇
  2001年   388篇
  2000年   306篇
  1999年   292篇
  1998年   211篇
  1997年   89篇
  1996年   84篇
  1995年   58篇
  1994年   60篇
  1993年   83篇
  1992年   38篇
  1991年   45篇
  1990年   32篇
  1989年   28篇
  1988年   24篇
  1987年   10篇
  1986年   17篇
  1985年   21篇
  1984年   19篇
  1983年   15篇
  1982年   15篇
  1981年   6篇
  1980年   11篇
  1979年   2篇
  1978年   5篇
  1977年   15篇
  1877年   1篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 921 毫秒
131.
B. Seth  S. Jung  B. Gruner   《Lithos》2008,104(1-4):131-146
Three dating techniques for metamorphic minerals using the Sm–Nd, Lu–Hf and Pb isotope systems are combined and interpreted in context with detailed petrologic data from crustal segments in NW Namibia. The combination of isochron ages using these different approaches is a valuable tool to testify for the validity of metamorphic mineral dating. Here, PbSL, Lu–Hf and Sm–Nd garnet ages obtained on low- to medium-grade metasedimentary rocks from the Central Kaoko Zone of the Neoproterozoic Kaoko belt (NW Namibia) indicate that these samples were metamorphosed at around 550–560 Ma. On the other hand, granulite facies metasedimentary rocks from the Western Kaoko Zone underwent two phases of high-grade metamorphism, one at ca. 660–625 Ma and another at ca. 550 Ma providing substantial evidence that the 660–625 Ma-event was indeed a major tectonothermal episode in the Kaoko belt. Our age data suggest that interpreting metamorphic ages by applying a single dating method only is not reliable enough when studying complex metamorphic systems. However, a combination of all three dating techniques used here provides a reliable basis for geochronological age interpretation.  相似文献   
132.
The Anarak, Jandaq and Posht-e-Badam metamorphic complexes occupy the NW part of the Central-East Iranian Microcontinent and are juxtaposed with the Great Kavir block and Sanandaj-Sirjan zone. Our recent findings redefine the origin of these complexes, so far attributed to the Precambrian–Early Paleozoic orogenic episodes, and now directly related to the tectonic evolution of the Paleo-Tethys Ocean. This tectonic evolution was initiated by Late Ordovician–Early Devonian rifting events and terminated in the Triassic by the Eocimmerian collision event due to the docking of the Cimmerian blocks with the Asiatic Turan block.

The “Variscan accretionary complex” is a new name we proposed for the most widely distributed metamorphic rocks connected to the Anarak and Jandaq complexes. This accretionary complex exposed from SW of Jandaq to the Anarak and Kabudan areas is a thick and fine grain siliciclastic sequence accompanied by marginal-sea ophiolitic remnants, including gabbro-basalts with a supra-subduction-geochemical signature. New 40Ar/39Ar ages are obtained as 333–320 Ma for the metamorphism of this sequence under greenschist to amphibolite facies. Moreover, the limy intercalations in the volcano-sedimentary part of this complex in Godar-e-Siah yielded Upper Devonian–Tournaisian conodonts. The northeastern part of this complex in the Jandaq area was intruded by 215 ± 15 Ma arc to collisional granite and pegmatites dated by ID-TIMS and its metamorphic rocks are characterized by some 40Ar/39Ar radiometric ages of 163–156 Ma.

The “Variscan” accretionary complex was northwardly accreted to the Airekan granitic terrane dated at 549 ± 15 Ma. Later, from the Late Carboniferous to Triassic, huge amounts of oceanic material were accreted to its southern side and penetrated by several seamounts such as the Anarak and Kabudan. This new period of accretion is supported by the 280–230 Ma 40Ar/39Ar ages for the Anarak mild high-pressure metamorphic rocks and a 262 Ma U–Pb age for the trondhjemite–rhyolite association of that area. The Triassic Bayazeh flysch filled the foreland basin during the final closure of the Paleo-Tethys Ocean and was partly deposited and/or thrusted onto the Cimmerian Yazd block.

The Paleo-Tethys magmatic arc products have been well-preserved in the Late Devonian–Carboniferous Godar-e-Siah intra-arc deposits and the Triassic Nakhlak fore-arc succession. On the passive margin of the Cimmerian block, in the Yazd region, the nearly continuous Upper Paleozoic platform-type deposition was totally interrupted during the Middle to Late Triassic. Local erosion, down to Lower Paleozoic levels, may be related to flexural bulge erosion. The platform was finally unconformably covered by Liassic continental molassic deposits of the Shemshak.

One of the extensional periods related to Neo-Tethyan back-arc rifting in Late Cretaceous time finally separated parts of the Eocimmerian collisional domain from the Eurasian Turan domain. The opening and closing of this new ocean, characterized by the Nain and Sabzevar ophiolitic mélanges, finally transported the Anarak–Jandaq composite terrane to Central Iran, accompanied by large scale rotation of the Central-East Iranian Microcontinent (CEIM). Due to many similarities between the Posht-e-Badam metamorphic complex and the Anarak–Jandaq composite terrane, the former could be part of the latter, if it was transported further south during Tertiary time.  相似文献   

133.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   

134.
135.
The utility of paleomagnetic data gleaned from the Bhander and Rewa Groups of the “Purana-aged” Vindhyanchal Basin has been hampered by the poor age control associated with these units. Ages assigned to the Upper Vindhyan sequence range from Cambrian to the Mesoproterozoic and are derived from a variety of sources, including 87Sr/86Sr and δ 13C correlations with the global curves and Ediacara-like fossil finds in the Lakheri–Bhander limestone. New analyses of the available paleomagnetic data collected from this study and previous work on the 1073 Ma Majhgawan kimberlite, as well as detrital zircon geochronology of the Upper Bhander sandstone and sandstones from the Marwar SuperGroup suggest that the Upper Vindhyan sequence may be up to 500 Ma older than is commonly thought. Paleomagnetic analysis generated from the Bhander and Rewa Groups yields a paleomagnetic pole at 44°N, 214.0°E (A95 = 4.3°). This paleomagnetic pole closely resembles the VGP from the well-dated Majhgawan intrusion (36.8°N, 212.5°E, α95 = 15.3°).Detrital zircon analysis of the Upper Bhander sandstone identifies a youngest age population at 1020 Ma. A comparison between the previously correlated Upper Bhander sandstone and the Marwar sandstone detrital suites shows virtually no similarities in the youngest detrital suite sampled. The main 840–920 Ma peak is absent in the Upper Bhander. This supports our assertion that the Upper Bhander is older than the 750–771 Ma Malani sequence, and is likely close to the age of the 1073 Ma Majhgawan kimberlite on the basis of the paleomagnetic similarities. By setting the age of the Upper Vindhyan at 1000–1070 Ma, several intriguing possibilities arise. The Bhander–Rewa paleomagnetic pole allows for a reconstruction of India at 1000–1070 Ma that overlaps with the 1073 ± 13.7 Majhgawan kimberlite VGP. Comparisons between the composite Upper Vindhyan pole (43.9°N, 210.2°E, α95 = 12.2°) and the Australian 1071 ± 8 Ma Bangamall Basin sills and the 1070 Ma Alcurra dykes suggest that Australia and India were not adjacent at this time period.  相似文献   
136.
A simple mathematical model for soil nail and soil interaction analysis   总被引:1,自引:0,他引:1  
Soil nails have been widely used to stabilize slopes and earth retaining structures in many countries and regions, especially, in Hong Kong. The analysis of the interaction between a soil nail and the surrounding soil is of great interests to both design engineers and researchers. In this paper, authors present a simple mathematical model for the interaction analysis of a soil nail and the surrounding soil considering a few key factors which are soil dilation, bending of the soil nail, vertical pressure, and non-linear subgrade reaction stiffness. The lateral subgrade reaction between the soil and the soil nail is assumed to obey a hyperbolic relation. Reported test data in the literature are used to verify the present model. The contributions of the soil-nail bending on the pull-out resistance are evaluated in two case studies.  相似文献   
137.
中国甘肃省酒泉地区公婆泉盆地早白垩世恐龙化石   总被引:2,自引:0,他引:2  
尤海鲁  罗哲西 《地质学报》2008,82(1):139-144
中国甘肃省酒泉地区公婆泉盆地下白垩统新民堡群的恐龙化石主要由1992年中日丝绸之路恐龙考察计划和1997~2000年中美马鬃山恐龙考察计划发掘和研究。先后发现的恐龙包括兽脚类、蜥脚类、禽龙类和新角龙类等。这一新的公婆泉恐龙组合的主要特征是同时包含了在晚白垩世占主导地位的几类恐龙的基干分子,如戈壁巨龙(Gobititan)是巨龙型类的基干分子,马鬃龙(Equijubus)是鸭嘴龙型类的基干分子,而古角龙(Archaeoceratops)和黎明角龙(Auroraceratops)是新角龙类的基干分子。公婆泉恐龙组合的另一特征是其某些成员的体型较大,如似鸟龙类和镰刀龙类恐龙是同期同类中最大的。比较研究发现,公婆泉盆地新民堡群的恐龙和辽西热河群的恐龙关系密切,但前者的整体来说要比后者进步。考虑到公婆泉盆地新民堡群的时代(Albian)较辽西热河群(Hauterivian晚期-Aptian早期)晚,公婆泉恐龙组合似应代表中国北方早白垩纪鹦鹉嘴龙恐龙动物群进化过程中较进步的一个阶段。  相似文献   
138.
Anoxic nitrification: Evidence from Humber Estuary sediments (UK)   总被引:3,自引:0,他引:3  
Conventional understanding of the nitrogen cycle in marine sediments has changed in recent years with the discovery of an alternative pathway for ammonia oxidation via the reduction of manganese oxides (during anoxic nitrification). In anoxic sediments, the potential for manganese oxides to serve as oxidant for nitrification may be considerable yet previous work on manganese-rich sediments has suggested anoxic nitrification may not be significant. In this study, the potential for anoxic nitrification in a range of sediment types was investigated. Laboratory incubation of sediment from three sites on the Humber Estuary, a microbially diverse environment, showed anoxic accumulation of nitrate, nitrite and dinitrogen gas, with and without the addition of synthetic manganese oxides. Incubation experiments confirmed anoxic nitrification as microbially mediated, with heat-killed controls yielding negative results. The anoxic nitrification reaction significantly depleted ammonia concentrations, and occurred simultaneously with manganese-, iron- and sulphate reduction, and methanogenesis. Taken in conjunction with other studies, results suggest anoxic nitrification may not only be dependent on total manganese concentrations but on manganese dynamics. Anoxic nitrification may be explained as a non-steady state reaction, dependent on the recent stability of a sediment system. Physical perturbation of sediments may cause the redistribution and/or introduction of manganese oxides and promote anoxic nitrification. The significance and persistence of anoxic nitrification is likely to depend on the frequency and magnitude of sediment perturbation, which explains why the reaction varies so widely across studied sites, and why it may not occur in some manganese-rich sediment.  相似文献   
139.
This paper presents the results of a comparative study relating to the application of four vulnerability mapping methods, GOD, AVI, DRASTIC and SINTACS, in a pilot detritic aquifer situated in NW Morocco, known as the Martil–Alila aquifer. The principal objective of this work is to determine the most suitable such methods for this aquifer type within a Mediterranean context, and to show the effect of the rainfall variations that are characteristic of the Mediterranean climate on the degree of vulnerability. The methods applied distinguish five classes of vulnerability, these being irregularly divided up in space, with the division varying according to the method in question. The vulnerability maps obtained by the different methods strongly suggest that the eastern half of the aquifer is more vulnerable to contamination than the western half, for all hydrological situations. The effect of climatic conditions on the degree of vulnerability is well represented by the DRASTIC, according to which the aquifer is moderately to strongly vulnerable during humid hydrological years and weakly to moderately vulnerable during dry ones. For the other methods, this climatic effect is limited to the area occupied by the two predominant classes (“High” and “Low” for GOD and “High” and “Moderate” for SINTACS) while it is null for AVI. In conclusion, DRASTIC appears the most suitable for mapping the vulnerability to contamination of Mediterranean coastal detritic aquifers such as the Martil–Alila aquifer.  相似文献   
140.
The spatial distribution of grains in a solidifying igneous rock controls the physical properties of the crystal mush, and in turn is controlled by the rate of crystal growth and accumulation. A predominant non-spherical habit for igneous minerals brings into question the use of spherical particles in reference packings used for quantification of spatial distribution. Furthermore, variations of crystal clustering/ordering with length scale require spatial statistics which take into account the distribution of particles beyond nearest neighbours. Using random close packings of spherocylinders, we demonstrate the importance of aspect ratio for the aggregation index (usually known as R) and show that packings of spherical particles have more structure than packings of rods. The spatial distribution functions demonstrate that the plagioclase grains in the colonnade from the Holyoke basalt are clustered on a length scale of 0.5 mm. Understanding the controls on grain spatial distribution in igneous rocks will depend on the application of these techniques to well-understood environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号